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EXACT AND APPROXIMATE SOLUTIONS OF A

PROBLEM

CHEMICALLY REACTING NONEQUILIBRIUM FLOW

R. K. AnLuwaLia and Paur M. CHuNG*

Argonne National Laboratory, Argonne, IL 60439, U.S.A.

(Received 28 April 1979 and in revised form 23 October 1979)

- By studying a two-dimensional flow problem, the consequences of employing approximation

methods in ignition problems are elucidated. Asymptotic and local similarity solutions are obtained for flows
over an adiabatic plate and over a perfectly conducting plate. The governing partial differential equations are
transformed into a single integral equation in Von Mises space which is amenable to solutions by the Laplace
method and by the assumption of a slowly varying function. To apply the technique of local similarity to the
present problem, the usual boundary layer similarity transformation is used. The results are compared with
an available exact numerical solution.

NOMENCLATURE

constants of integration in equation
(23);

dimensionless heat release parameter
defined in equation (30);

mass fraction of ith species;

specific heat of ith species;

average specific heat of gaseous
mixture;
diffusion
mixture;
activation energy;

reduced stream function defined in
equation (36);

0.322,/2;

enthalpy of ith species;

enthalpy of gaseous mixture;

heat of formation of ith species;

heat of reaction defined in equation
(27);

non-dimensionalized enthalpy defined
in equation (11);

surface production rate of ith species;
surface production rate defined in
equation {10);

frequency factor;

(P} (P ;

length of plate;

Lewis number;

molecular weight ith species ;

average molecular weight of gaseous
mixture;

flow pressure;

Prandti number;

parameter defined in equation (30);

coefficient of gaseous
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2
3,

Se,

Subscripts
0)
1 3
2
3 £
0,
w’

gas constant;

space variable on Laplace transformed
plane;

Schmidt number;

temperature;

reference temperature ;

flow velocity in x-direction;

flow velocity in y-direction;
dimensionless consumption parameter
defined in equation (16);

distance along direction of gas flow;
parameter defined by equation (30);
coordinate normal to flow direction;
transient space variable defined by
equation (15);

thermal diffusivity ;

dimensionless activation energy para-
meter defined in equation (19);

shear stress defined by equation {20);
similarity variable defined by equation
(33);

non-dimensionalized temperature;
thermal conductivity ;

dynamic viscosity;

parameter defined in equation (44);
dimensionless space variable defined in
equation (33);

density;

conversion defined in equation (11);
conversion in transformed plane;
stream function.

initial;
CO;

CO,;
undisturbed region;
wall
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INTRODUCTION

THE INTERESTING aspects of nonequilibrium, chemi-
cally reacting boundary layers that originate from the
interaction between the boundary-layer characteris-
tics and the finite-rate chemical reactions are con-
tained within a set of coupled nonlinear partial
differential equations that describe the conservation of
mass, energy, and momentum. In the case of surface,
chemical reactions, these governing equations are
identical to those for inert boundary layers. The
chemical reaction effects on these equations enter
through their boundary conditions. In certain situ-
ations, the corresponding chemically inert problems
possess similarity solutions, whereas, in other in-
stances, approximate solutions can sometimes be
obtained through the so-called local similarity and
local nonsimilarity methods. In the equilibrium limit,
where the chemical reaction takes place at an infinitely
fast rate as compared to the characteristic residence
times of the chemical species, these existing solutions
can be used, provided properly modified energy-
driving potentials are defined. For the nonequilibrium
case, where the chemical reaction proceeds at a finite
rate, no such direct extension exists. In their desire to
utilize directly the abundantly available chemically
inert results, many researchers have either formulated
approximate models or have resorted to certain approx-
imation techniques of solutions of the equations.
Several authors have adopted the local similarity
assumption in their solutions, which has sometimes
resulted in nonumique, multiple solutions for the
steady state problems, even though the exact pro-
cedure leads to unique solutions. One of the objectives
of the present work is to shed some light on the use and
the consequences of these approximation methods and
to elucidate the nature of the fallacious implications
introduced by such methods of solutions.

Surface reactions can generally be classified in two
categories. The surface either participates in the chemi-
cal reaction or may only act as a catalyst. The subjects
of ignition and combustion of the solid fuel fall into the
first category, and the problems of catalytic surface
recombination of dissociated species and numerous
other catalytic problems comprise the second. Liu [1]
studied the transient problem of the onset of surface
combustion in a still atmosphere. He concluded that
the system could stabilize in either a weak or a
diffusion-limited reaction mode. Waldman [2] ques-
tioned the validity of these inferences and showed that
only a strong combustion mode is possible. Approxi-
mative analyses performed in his paper pointed to the
possibility of three combustion states, which was
declared to be physically implausible. Yung and
Chung {3] correctly atiributed the redundant com-
bustion modes to the local similarity assumption,
which is based on the qualitative notion that the ratio
of time derivative to the function itself should be small.
The correct solution, on the other hand, showed that
the timewise temperature gradient at the incipient
ignition point was so large that a term, ‘thermal shock’,
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was coined to explain its existence. The multiplicity
arising in this situation can be quite simply discarded
once it is realized that time cannot go backwards.

Another related study that merits 2 mention is due
to Kashiwagi er al. [4]. Frustrated by the limilation of
one-dimensional models in distinguishing the do-
minant ignition mechanism between surface and gas
phase reaction theories for solid propellants, the
authors resorted to a two-dimensional unsteady forced
convective model. This model includes the surface
regression of the solid surface and more importantly
accounts for heat conduction in the transverse direc-
tion in the solid fuel of semi-infinite extent, thereby
introducing time as an independent variable. The gas
phase was considered to be in quasi-steady state. In
order to reduce the complexity of the numericai
computations, the local similarity approximation was
invoked. The solution did not show any multiplicity:
the results of the present study will help forward some
explanations concerning this aspect of the solution.

Artyukh er al. {5] used the local similarity approach
in deducing the ignition and extinction criteria as-
sociated with surface reactions. Lindberg and Schmitz
[6] have shown that the extinction phenomenon they
observed has no counterpart in the exact solution of
the problem. During the numerical simulation, they
found that multi-valued solutions are obtained when
the increments in the longitudinal direction are not
sufficiently small. Instead of directly integrating the
governing equations, Mihail and Teodorescu [ 7] have
numerically solved the superposition integral derived
previously by Lighthill {8], Chambre [9], and others.
With this approach, uniqueness of steady states was
obtained independently of the step size. Lindberg and
Schmitz also showed that the same boundary layer
problem on a perfectly conducting solid plate admits
genuine multiple solutions.

This work will apply analytical tools w0 the Lind-
berg and Schmitz problem of surface ignition in a
flow system. The solid surface will be considered to be
either adiabatic or perfectly conducting. In the latter
case, solution will be obtained by the local similarity
method. By comparison with an exact solution, it will
be demonsirated that the local similarity approxi-
mation is valid in this case. For an adiabatic surface,
solutions will be obtained by an asymptotic method
and by the local similarity method. Although the
former approach predicts unique solutions, the locat
similarity method produces multi-valued results. A
comparison with an exact numerical solution will
prove that the adiabatic surface ignition problem does
not admit nonunique solutions. The accuracy of the
asymptotic technigue will be evaluated. The closed-
form local similarity solutions will be obtained for
subsequent comparison with correct solutions, by
transforming the governing equations into equations
in the similarity space. In order to furnish correct,
although approximate, asymptotic solutions, the
governing equations will be cast into an integral form.
This can be done only by suitably approximating the
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velocity profile near the surface. Instead of producing
the Lighthill type of integral equation, a nonlinear
Volterra equation will be generated, which will be
solved by employing the Laplace method of evaluating
integrals in the case of an adiabatic plate. The essen-
tially closed-form nature of the solutions will aid in
deciphering correctly the characteristics of the approx-
imation methods of solution.

DESCRIPTION OF THE PROBLEM

The model being considered is a two-dimensional
system in which a stream of reactants flows past a solid
surface. An exothermic reaction occurs on the solid
surface. The solid may be either chemically reactive or
merely catalytic in nature. Two kinds of thermal
conditions at the solid surface are represented. In the
first, the thermal conductivity of the solid is taken to be
infinite. In the second case, the solid is very thin or its
thermal conductivity is negligible, so that the boun-
dary condition of an adiabatic surface is implied.

MATHEMATICAL FORMULATION

The following are the material, momentum, and
energy boundary layer equations for flow past a flat
plate that account for a finite-rate chemical reaction on
a solid surface.

Continuity:
i) i
a@m+ (pv) = v
Momentum:
ou ou O oOu
ot e ) @

Conservation of energy:

uah + oh 0 " oh 3
=y opr—
Pox TP " oy\pPr oy/) @)
Conservation of species:
ac; ac;, 0 (p acC
— 4 —_ == 4
pu ox Py dy Dy(Sc oy ) @
Where
h = 2 Cihii
T
h=h + f C,dT. 3)
1‘0
Initial conditions,
at x=0, y>0:
U=uUuy, v=0, T=T, C/=Cy.
Boundary conditions,
at x>0, y=0
u=v=0
ac
PP = Ju, ©)
y
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For perfectly conducting plate

L
f <9ﬁ> dx=0 and T, =const. (7)
ay y=0

For adiabatic plate,

5.
6y y=0

y—w,

T= Tma

At x>0,
Ci = C,'w.

Some of the assumptions adopted in this study are:
the gaseous mixture behaves like a perfect gas whose
Prandtl and Schmidt numbers are constant and equal ;
the specific heat of the gaseous mixture is a constant,
and the ratio, pu/p .t is a constant, I. The gaseous
mixture is considered to be frozen, and the pressure is
taken as a constant. The energy equation can also be
written in terms of temperature as

oT oT o (u 0T
— — . 8
pu + pY (?y 6y<Pr 6y> ®)

In order to compare the results directly with those of
Lindberg and Schmitz, the reaction model of those
authors is used in this study. The kinetic model
considered was the catalytic oxidation of carbon
monoxide on a silver-palladium catalyst. Carbon
monoxide (subscript 1) and oxygen (subscript 2) react
irreversibly to form carbon dioxide (subscript 3)
according to the following stoichiometry:

CO + 10, - CO,.

U=1uUy,

Thus,

=~ ~ M\ c.
M, [ChC,
- M3< Ciw ) %

where M denotes molecular weight. The rate ex-
pression was represented by the following second-
order Arrhenius type relationship:

E

RT/

The kinetic constants, E and k, were taken as 48.5kJ/
mol and 0.013 m*/(s.kg.K), respectively. The ad-

ditional data used in their calculations are given
below:

p=1tlatm, T,

Cio—C, _2M, (sz—Cz>

J, =kTp>C,C, exp(— (10)

=473K, T°=298K,
(puu)e, = (p*Du, = 7.98 x 1076 kg?/(m? s2),
Cin =01, C;p =09, Csyp=0,
K = —395kl/g, hQ= —894kJjg, hS=0.
The following nondimensional variables are defined,

T-T, Cio—C; he—h
0 = m’ - i i H= ®
Tw ¢ bﬂjlw ’ h ’

o«

(1
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where b; is the stoichiometric coefficient for com-
ponent { and J,, is equal to J,,./b;.

First, the continuity equation is satisfied by defining
the stream function, ¥, in the standard manner [10]
{ie. &Y/ Cx = —pr, OY/8y = pu). Solution of the
momentum equation, equation (2), is well known.
Utilizing the surface shear stress, A(x), available from
the solution, the velocity, u, is replaced by its assymp-
totic form near the surface, after Fage and Falkner
{11}

This is acceptable because it is the velocity profile
near the surface that most influences the temperature
and the distribution of chemical species. Thus,

-V, (12)
Hy

where A{x) is the shear stress at the wall. The stream
function, y, can now be approximated as,

' du 1 (pp)y ,
= d?f\z --------- u‘s
¥ L pudy J 5572 a0 Y

which relates u with ¢ in the following way:

- (20}
P s '

-

(13)

The governing equations, when transformed from
{x, ¥) to {z,¥) plane, are:

o _2 (o ay)
az oy W

where Y may represent 8, H, or ¢, and z is a transient
independent variable defined as,

(14)

fx

1 _
z= j [2U(pu) oA x)] 7 dx.
8]

i
Pr (3)

The transformed initial and boundary conditions are:

0(0,¢) = ¢(0, ) = H{O.y) = 0,

(l/,uz ?ﬂ) LS
M Jy=0 Ciw «/[21(911)@ A(2)]

=3W(), (16)
J' (11'*‘1'2 é’H) 4z =0 for a perfectly
W Ju=o conducting plate,
(17
(l//m 6H) -0 for an adiabatic
W Jy=o plate
where
el
e ko Co Co T e T
'}w“"‘ kpaoclaoclx {1+f} } eXp \1+0W/
MZ ('I:t» )
i S £.1 18
¢w)<1 M, (Zmd)w/ (13)
and
E
= - 19
B R.T. (19)
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The shear stress, A(x), is given by the following
equation:

du _((P#)mf Y2
Alx) = ( 0}:>w~ f?.umx) S Ome

where f7(0) is the Blasius surface shear available as the
solution of equation (2). With the use of the above
representation for A(x), equation (15) becomes

2[00
i= Lf _(v_)] (i ppu)y)

{20)

34 '4&

{213

ANALYSIS

The governing partial differential equations for the
adiabatic plate and for the perfectly conducting plate
will now be analyzed by an asymptotic technique and
by a local similarity method. In order to apply the
asymptotic technique, the reactant conversion equa-
tion in the {z,¥) plane is first transformed into a
nonlinear integral equation, subsequently simplified
for the case of adiabatic plate by the Laplace method of
evaluating integrals with a large parameter. For the
purpose of obtaining local similarity solutions, the
governing equations are transformed into a similarity
space. True similarity solations are possible only in the
frozen and equilibrium limits. In the context of local
similitude, however, non-similar terms consisting of
longitudinal derivatives are dropped and the axial
variable is treated as a parameter. The analytic results
from the two methods will be compared with an exact
numerical solution.

1. Solution by asymptotic method

(a) Adiabatic plate. The linear governing equations,
{14), are transformed in the independent variable z as
follows :

2’ _ y\(“*,::
dw(:p dw) =0 (22)

where Y is the Laplace transform defined as

-
Q

The solution of equation (22), which is finite in the limit
of p —» 0, is

e ¥ Yz, ¢)dz.

- 4 ~ L )
Y = dlfl“‘Kh3<§\/Sd/3'4) (23)
where K,;; is the one-third order modified Bessel
function of the second kind. On applying the boundary
condition given by equation (16), the following equa-
tion results for ¢, :

24

~ (3)2*‘ T14/3) Wis)
%==13) rem 57
Using the convolution theorem, the inverse transform-
ation of the above equation is

3)2’3 T@/3) [
AT [,
= (2, rem o
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1 1
*G=2)" T(1)3)

On employing the enthalpy and conversion defining
equations, (5) and (11), H can be expressed as

dz'. (25)

1
H=1 _h—[clmh(l) + Cth(ZJ
+C3ohd + CP(T—TO) — ¢ AR°Ci ] (26)

where

M,
M,

Are = h0 + M2y Mayo

M, 27

For the adiabatic plate, solution of the energy equa-
tion, expressed in terms of the enthalpy function H, is
trivially obtained as

H=0,
so that, with the help of equation (26),

C,To

= 0.
o=(c2sm)
With the availability of the above relationship, it is
necessary only to solve the ¢ equation, (25), to describe
the flow system. After some mathematical manipu-

lation of equation (25), the following integral equation
obtains:

(28)

1 /4\*7 1
=6 rm
y PriPp T, Crne™? <C,wAh°>
((puu) ) 2Lf"(0)]'?

1 0.\/. o,
x f (1+ew)(1 _FXI '5)

cexp( PO\ X7 4 (29)
— 4Xx
FP\1+0,) o —x)7"
where
p_CiaBh®  2M, Gy,
- CT.,’ M, C,
and (30)
xp = x4,

From physical reasoning, the surface temperature for
an adiabatic plate is a monotonically increasing
function of x, so that the Laplace method may be
employed to evaluate the integral in equation (29)
asymptotically as follows [12,13]:

X 0N O

o -(1+80,) B rB

X €X BB d :
P\i¥e, ) r—xy2?

(-5 )
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B do,
e"p{ (1+6,)? dx

:I(x' _xr)}
dx’
T

I A AYS ew)

T (1+96,) B B

oo [ B0 \[ (146, ]“3
P\1%6, )| pae, /dxy)

ﬂ(dow/dxz:)

Caeas ]XT e *ixy 2P dx,

x lim
B Jg

xlT” 0, B,
= (1+6w)<1 7)(1 B 5)" p<1+9 )
“|Bdb x| Jo
x1/3 0, 0,
m“’uww)(l B F)(l B E)

89, \[ (1+6,)? ]”3
* °Xp<1+9w> B(d6,/dxy)

Finally, on rearrangement:

g2 % _ 1[ V3 (4)
“dx  Bla/2n\3
[T(1/3)]*Pr*Pkpi T Cru
[Hppu)o] 2L f @]
x1/2 0 3
X -—|1=--=
1+46,) ( B )
8.\’ 3p6,,
X (l rB) exp(H_Bw).
The numerical computation involved in integrating
equation (32) is almost trivial compared with solving
equation (25), from which it was derived.

(b) Perfectly conducting plate. In the case of the
perfectly conducting plate, the surface acquires a
uniform temperature. In this situation, the Arrhenius
term of the chemical reaction term [ W(z')] in equation
(5) loses its positional dependence and becomes a
constant above z'. This leads to the hypothesis that W
(z')is a slowly varying function in comparison with the
term 1/(z—z')*", which has a removable singularity at
the upper limit of the integral under consideration. But
this s, indeed, the premise upon which the local
similarity method is based, and the corresponding
term in that method is much easier to handle. For that
reason, this approach for the perfectly conducting

plate is abandoned here in favor of the local similarity
method.

—-2/3
1 " dx,

€2))

e ? P
d

(32)

2. Solution by local similarity method

(a) Perfectly conducting plate. For analysis of pro-
blems by the local similarity method, it is convenient to
transform the parabolic equations into a similarity
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space, which reveals the true nature of the parabolic
problem. The following similarity variables are
defined:
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where /”(0) is obtained from the existing exact solution
of the momentum equation (34}). The solution of the
remaining equation (35) is

¢ jx( )i = ( ()7 a7
= 1) dx = X, = - e FEZ I,
. Pt {puu) ¢ z) o T {
0 ‘ F0)Se p
_ ton) f ~~~~~~ dy. (33) X Xp( 0w )dn
«/(2 & Jo Pu ~ 6
and {40}
f i i - 3 My
The transformed governing equations are o-oli_ WY 3 £ 1 _(9} {)f]l i
ST f =0 (34) " 2 rasy s
and ;g 3y
S (U7 o T
{ 61’ % exp( - )dn i
—'Y”’{“fY’““'zéf . (35) K i
Pr
so that
where f is the nondimensional stream function, oo ) ( 4>2_33 - (1> PrARET e
f=—t gy V2V 3 e 10
@ s,
and the prime denotes differentiation with respect to 5. exp 148 o
The transformed initial and boundary conditions are: ”(“11"9‘“)'_( =Wl =1 )X T (41
at &E=0, n>0, and
f=f=0. 0=0. ¢=0, (d?) () Tert
at £>0. =0, fyeo 2 sy
f=f"=0 Substituting equations (37) and {42) into (38}, and
making use of equation (41) yields:
(1+7r) + (”) (r 1)z+2r(1+,,(’ w> ( ! : H~r )
P+ r{—= ]~ {r— e
JL) L WL = H VL
AT oo N2 s 3
(r——l)[(r——l)z + 2r(1+:~)(lﬁ-,_)+ r~’<u‘7t-,) } 1P o 1+,;( ‘ }g
W/ L/ i L/ . L
x ln VU S — S— —_ v e e s — F
v
2r? ( ) i
/L j
. \«« v\ VI
{(r»«l + 2r(1+7r) ( )Jrr (> +Ar+ v(}
o / L L ) b
+ r(L:>1n Y W e Y Ty
/L PN
“ .
2}'( “"’::;._)
\Vf"L,/
C, Ty )
, =21 O
o9 _ (2£>"2 s, a7 (C.mAh"
on L) (prn)eCro ™ where
J‘s:, i (@H) P 3 2:3 1
o JE\ Jy-0dE=0. (38) V' =v 2(;) 3

The local similarity method is founded on the notion
that changes in the streamline direction (£} are suf-
ficiently small that the streamwise derivatives in
equation (35) may be neglected. The variable { appears
explicitly only through the boundary conditions. The
velocity approximation of equation {12} gives for /()

f=1"0m*/2 (39)

[Hpuu)o) 2 Lf O]

(£+9 }

Prifkpl T Cope o (,{39 )
Pive,.

{44}

Before these solutions are discussed, the adiabatic case
will be analyzed by the local similarity method also.
{b) Adiabatic plate. Equation {41), derived earlier
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for the case of perfectly conducting plate, is equally
valid here. With the help of the relationship between
the fractional conversion and the nondimensional
temperature given by equation (28), (41} may be
modified to yield the following algebraic equation:

1[4\ PriKkpL T, Cype™ ]
=—1(2) ras
o ﬁ[(3> P i o L OT

ex p( o, )
8 0, 146,/ .,
e | I . Al 45

* (1 B)(I rB) ey W
In all numerical computations, the parameters /, C,,
and M, the average molecular weight of the mixture
were assigned values of 1, 0.53kJ/(g-k) and
32 g/g - mole, in that order.

RESULTS AND DISCUSSION

It should be noted that the temperature has a much
greater influence on the reaction rate than does the
concentration. For a perfectly conducting plate, the
surface attains a uniform temperature, which induces
the reaction rate to be a slowly varying function, and
the integral equation degenerates into a nonlinear
algebraic equation with possible multi-valued so-
lutions associated with it. The same ignition behavior
is also predicted by the exact numerical analysis. Van
Heerden [14] states that a necessary condition for
multiplicity in exothermic processes is a feedback of
heat along the reaction path. The conduction of heat
along the axial direction in the plate provides the
necessary feedback in this case. As shown in Figs. 1 and
2, three combustion modes are possible. There are two
stable solutions: at low temperature and low degree of
conversion, and at high temperature and high degree
of conversion. The middle combustion mode cor-
responds to an unstable ignition state. The two stable
solutions represent the extinguished and fully-ignited
states and are, respectively, chemically and diffusion
controlled.

In the case of a perfectly conducting plate, 8,, is
constant and equation (40) expresses a true similarity
solution in which § is a function of the similarity
variable, 5, only. For an adiabatic surface, on the other

1500

L B 00| A 22117
1400p -
1Boo~ .=
1200~ .
1noof~ &

o 1o00k ! APPROXIMATE LOCAL

- Y, | SIMILARITY SOLUTION

N 900 % £q. {43) .
800k N -
760 EXACT NUMERICAL ™ —

SOLUTION OF S
600~ LINDBERG AND SCHMITZ -1
500l=_(1969) .
soolL ot g ogpaunl oavennd g opy
Lixi10™ 11x1078 Lixio” 11x1078 5.5x10°

(pruly L thg/ (msh?

FiG. 1. Surface temperature dependence on plate length for
perfectly conducting plate.
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F1G. 2. Surface concentration profile for perfectly conducting
plate.

hand, 6, as given by the implicit relationship of
equation (45) leads to spurious multi-valued solutions
not present in the exact solution of the governing
equations. Figure 3 shows an interesting feature,
namely, that according to the local similarity method,
as the free stream temperature is increased, the regiorn
of multiplicity narrows and ultimately vanishes.

As explained by Kashiwagi et al. in [4], the adiabatic
surface model of the present study may be regarded as
a rough steady state analogue of their unsteady
situation. Whereas both equation (45), based on local
similarity method, and equation (32), based on physi-
cally correct Laplace asymptotic method, show x/u,,
to be a naturally occurring parameter implying that
the ignition delay distances should be proportional to
free stream velocity, [4] found the first ignition point
to be always near the leading edge. This discrepancy
was attributed to the different boundary conditions
considered in the steady state and unsteady state
models. In the case of adiabatic surface, as considered
in the present steady state model, the excess energy
released by the surface reaction is stored entirely
in the gas phase. However, in the unsteady state
model, because initially the surface is cold, the excess
energy goes into heating the solid phase so that the
downstream part is too cold to initiate substantial
chemical reaction. For this reason, ignition occurs at

S ML
18500k—1,=673 K
1400—

13004~
1200

~ 1100

X

~ 1
41000

= g0p

7 —~—NUMERICAL LOCAL
SIMILARITY SOLUTION
OF LINDBERG AND
SCHMITZ {1969}  —f

——— ANALYTIC LOCAL —
SIMILARITY SOLUTION |

8o FROM EQ, (45}

700 -

600 —

500) . —

400—1 Lol el ad
22x0™  22x0°  2.2x107° 2.2x107 pixio®

(pu w,, X (kg/{m-s) )2

Fi1G. 3. Local similarity solutions for adiabatic plate.
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the leading edge after a lapse of some time (ignition
delay time) when the surface has become hot enough,
and the first ignition point is always in a forward
location. Subsequently, ignition commences at down-
stream positions and the steady state solution of the
present study is approached asymptotically in time.

Figure 4 points to the extent of inaccuracy inherent
in the use of local similarity method for an adiabatic
surface. Kashiwagi et al. [4] also recognize this
limitation and in a follow-up study [15] results were
presented (for the gas phase ignition problem) without
employing the local similarity assumption. The quali-
tative agreement in results of the two studies con-
solidate the conclusion that local similarity method
when applied to the conducting-surface ignition pro-
blem produces results which are at least qualitatively
correct. On physical grounds, the unsteady problem as
formulated allows only transverse conduction of heat
into the solid phase, hence there is no feedback along
the streamwise direction. Therefore, no multiple sol-
utions are expected to exist. Results of [4] do not
indicate any spurious muitiple solution being in-
troduced by the local similarity method either. On the
other hand, Fig. 3 has already confirmed that in the
case of an adiabatic surface, the local similarity
method leads to physically unrealistic multiple so-
lutions. It is proposed that in the unsteady model, the
extra mechanism of heat diffusion into the solid phase
(as compared to the adiabatic surface) relieves the
longitudinal gradient of surface temperature, thereby
enabling the local similarity method to accommodate
correctly the less abruptly changing character of the
solution.

Figure 4 also provides a comparison between the
results obtained by the present Laplace asymptotic
method and the exact numerical solution of Lindberg
and Schmitz. To make the problem amenable to
closed-form solutions in the present work, three as-
sumptions not previously used for finite difference
solutions have been employed. The specific heat was
regarded as constant, and the gas phase density
assumed to be a function of the temperature only. An
approximate velocity profile that is asymptotically
correct at the solid surface has been used. In spite of
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F1G. 4. Surface temperature profile for adiabatic plate.
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these simplifications, the agreement between the re-
sults is excellent, even for a relatively low value of the
nondimensional activation energy parameter, f. As
opposed to the local similarity results, the solution
changes abruptly from a kinetically controlled to a
diffusion controlled regime near the ignition point.

It should be pointed out that the assumption of
unity Lewis number can be readily relaxed by follow-
ing the special technique developed in [16]. According
to this method, equation (25) for reactant conversion
and the like equation for temperature are 1o be
handled separately. The two equations can be sim-
plified by applying the Laplace method to them
individually and then solved simultaneously. The full
details of the procedure will be disclosed in a future
publication.

The provision of feedback is not a necessary con-
dition for existence of multiplicity. In a follow-up
paper by Lindberg and Schmitz [17], involving flow
past a blunt adiabatic object, the solution possessed
genuine multiplicity. This was explained on the basis of
possible multiple stagnation or ‘initial’ states. It should
be mentioned in this connection that the existence of
simple and multiple transitions between frozen and
equilibrium limits in the case of gas phase diffusion
flames for the stagnation mixing layer has also been
studied extensively in the past [ 18]. The mixing layer is
created by a jet of fuel meeting an oncoming stream of
oxidant at the stagnation region of a blunt body.
Stated simply, the multiplicity of states occurred when
the nonlinearity in the reference Damkohler number
became exceedingly large. For instance, a strong
exothermic reaction can greatly increase the tempera-
ture of the reaction zone {rom the original value,
without the reaction causing the exponential function
of the local Damkohler number to vary by an order of
magnitude. Lindberg and Schmitz refer to this as the
possible source of multiple initial states. It follows that
these authors would not have observed multiplicity
had they considered an example wherein the kinetic
rates were lower or the residence time was smaller.
Finally, the stagnation point multiplicity is possible
only because the local Damkohler number is inde-
pendent of the longitudinal coordinate in the stag-
nation region.

CONCLUSIONS

A forced convective ignition problem has been
analyzed. For the case of a perfectly conducting plate,
the surface temperature is constant, and the local
similarity hypothesis is physically applicable. Three
combustion modes, two stable and one unstable are
possible. For an adiabatic surface there is, near the
ignition point, a sudden change in the character of the
solution from a kinetically controlled to a diffusion
controlled regime. Depending upon the free stream
temperature and other flow conditions, the local
similarity hypothesis may not accommodate the ab-
ruptness, and may produce multi-values results that
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are at variance with reality. The Laplace method of
evaluating integrals is mathematically exact in the
limit of § approaching infinity. The usefulness of the
asymptotic technique can be judged from the fact that
the results are in excellent agreement with the exact
numerical solution, even though the value of the
nondimensional activation energy parameter was only
12.34 and the velocity profile used in the computations
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ignition distance is proportional to the product of the
free stream velocity and the inverse of the square of the
oxidant concentration. This is in apparent conflict
with the findings of a previous study on the de-
termination of the dominant ignition mechanism in
solid propellants ; this discrepancy has been explained.
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SOLUTIONS EXACTE ET APPROCHEE D’'UN PROBLEME D’ECOULEMENT
AVEC REACTION CHIMIQUE HORS D’EQUILIBRE

Résumé — En étudiant un probléme d’écoulement bidimensionnel, on dégage les conséquences de I'emploi

de méthodes approchées dans les problémes d’ignition. Des solutions asymptotiques et a similarité locale

sont obtenues pour des écoulements sur une plaque adiabatique et sur une plaque parfaitement conductrice.

Les équations aux dérivées partielles sont transformées dans I'espace de Von Mises en une seule équation

intégrale qui est résolue par la méthode de Laplace et avec 'hypothése d’une fonction lentement variable.

Pour appliquer la technique de la similarité locale, on utilise la transformation classique pour la couche
limite. Les résultats sont comparés 4 la solution numérique exacte.

EXAKTE UND ANGENAHERTE LOSUNGEN FUR EIN STROMUNGSPROBLEM
MIT CHEMISCHER REAKTION UND IM NICHTGLEICHGEWICHTSZUSTAND

Zusammenfassung—Anhand der Untersuchung eines zweidimensionalen Stromungsproblems werden die
Folgen erldutert, die sich aus der Anwendung von Niherungsmethoden bei Ziindungsproblemen ergeben.
Fiir Stromungen iiber eine adiabate und iiber eine vollkommen leitende Platte werden asymptotische
Losungen und Lésungen drtlicher Ahnlichkeit erzielt. Die bestimmenden partiellen Differentialgleichungen
werden in eine einzige Integralgleichung im von Mises-Raum transformiert, die sich mittels der Laplace-
Methode und unter der Voraussetzung einer sich schwach dndernden Funktion 16sen 148t. Um die Methode
(_1_er ortlichen Ahnlichkeit auf das vorliegende Problem anwenden zu kdnnen, wird die iibliche Grenzschicht-
Ahnlichkeitstransformation angewandt. Die Ergebnisse werden mit einer vorliegenden exakten numerischen
Losung verglichen.
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TOYHBIE U INPUBJAWXXEHHBIE PEIIEHHUA 3AJAYHU O XUMHWYECKH
PEATHPYIOUIEM HEPABHOBECHOM TEYEHHWH

Annoraums — Ha ocHoBe M3yueHMs 3aja4¥ O [ABYMEPHOM TEYEHHM BBISICHEHA BO3MOXHOCTH MCHOJIb-
30BaHUs NPHOIMKEHHBIX METONOB JUIS PELUEHHS 3aliay Mo BociiaMeHeHHIo. [Tosydensl acuMnToTH-
YeCKHE M JIOKaIbHO-N0100HbIE PelleHus AJS ciay4aes oOrTekaHMs aauabaTH4ecKol M MIEabHO npo-
Boasuiei naactud. OcHosHble Au(dEpeHIMa IbHBIE yPaBHEHHUS B YaCTHBIX TPOM3BOAHBIX ApeobpasytoTcs
B OJHO MHTErpajbHOE ypaBHeHHE B NpoCTpaHcTBe MH3eca, peleHHe KOTOPOrO MOXHO NOIYYHTh C
noMoublo Merona Jlannaca ¥ AONYLIEHHS O MEMJIEHHO H3MeHstolteics GyHkunn. s npumMeHeHHs
MeTOod JIOKAJIBHOrO N0A00HA HCnoNb3yeTcs 0OBIMHOE aBTOMOAEILHOE MPeodpa3oBaHHe MOTPAHUYHOTO
cnos. [IposeaeHo cpaBHEHHE PE3YJIbTATOB C HMEIOLUMMCS TOYHBIM YHCCHHBIM DELIEHHEM.



