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Abstract - By studying a two-dimensional flow problem, the consequences of employing approximation 
methods in ignition problems areelucidated. Asymptotic and local similarity solutions are obtained for flows 
over an adiabatic plate and over a perfectly conducting plate. The governing partial differential equations are 
transforms into a single integral equation in Von Mises space which is amenable to solutions by the Laplace 
method and by the assumption of a slowly varying function. To apply the technique of local similarity to the 
present problem, the usual boundary layer similarity transformation is used. The results are compared with 

an available exact numerical solution. 

NOMENCLATURE 

constants of integration in equation 

CW; 
dimensionless heat release parameter 

defined in equation (30); 
mass fraction of ith species ; 
specific heat of ith species; 
average specific heat of gaseous 
mixture; 
diffusion coefficient of gaseous 
mixture; 
activation energy; 
reduced stream function defined in 
equation (36); 
0.322$; 
enthalpy of ith species; 
enthalpy of gaseous mixture; 
heat of formation of ith species; 
heat of reaction defined in equation 

(27); 
non-dimensionalized enthalpy defined 
in equation (11); 
surface production rate of ith species; 
surface production rate defined in 
equation (10); 
frequency factor ; 
~~~~/(~~~~ ; 
length of plate; 
Lewis number ; 
molecular weight ith species ; 
average molecular weight of gaseous 
mixture; 
flow pressure ; 
Prandti number; 
parameter defined in equation (30); 

“- 
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x, 
XT, 

Y, 
z, 

% 
if4 

A, 
‘1. 

Subscripts 

4 
1, 
2, 
3, 
00, 
w, 

gas constant; 
space variable on Laplace transformed 
plane ; 
Schmidt number; 
temperature; 
reference temperature; 
flow velocity in x-direction; 
flow velocity in y-direction; 
dimensionless consumption parameter 
defined in equation (16); 
distance along direction of gas Bow; 
parameter defined by equation (30); 
coordinate normal to flow direction; 
transient space variable defined by 
equation (15); 
thermal diffusivity ; 
dimensionless activation energy para- 
meter defined in equation (19); 
shear stress defined by equation (20); 
si~~arity variable defined by equation 

(33); 
non-dimensionalized temperature; 
thermal conductivity; 
dynamic viscosity; 
parameter defined in equation (44) ; 
dimensionless space variable defined in 
equation (33); 
density ; 
conversion defined in equation (if); 
conversion in transformed plane; 
stream function. 

initial; 
co; 
0. 
C;;,; 
undisturbed region ; 
wall. 
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INTRODUCTION 

THE INTEREST~NC~ aspects of nonequilibri~, chemi- 
cally reacting boundary layers that originate from the 
interaction between the bound~y-layer characteris- 
tics and the finite-rate chemical reactions are con- 
tained within a set of coupled nonlinear partial 
differential equations that describe the conservation of 
mass, energy, and momentum. In the case of surface, 
chemical reactions, these governing equations are 
identical to those for inert boundary layers. The 
chemical reaction effects on these equations enter 
through their boundary conditions. In certain situ- 
ations, the corresponding chemically inert problems 
possess similarity solutions, whereas, in other in- 
stances, approximate solutions can sometimes be 
obtained through the so-called local similarity and 
local nonsimilarity methods. In the equilibrium limit, 
where the chemical reaction takes place at an in~nitely 
&St rate as compared to the characteristic residence 
times of the chemical species, these existing solutions 
can be used, provided properly modified energy- 
driving potentials are defined. For the nonequilibrium 
case, where the chemical reaction proceeds at a tinite 
rate, no such direct extension exists. In their desire to 
utilize directly the abundantly available chemically 
inert results, many researchers have either formulate 
approximate models or have resorted to certain approx- 
imation techniques of solutions of the equations. 
Several authors have adopted the local similarity 
assumption in their solutions, which has sometimes 
resulted in nonunique, multiple solutions for the 
steady state problems, even though the exact pro- 
cedure leads to unique solutions. One of the objectives 
of the present work is to shed some light on the use and 
the consequences ofthese approximation methods and 
to elucidate the nature of the fallacious implications 
introduced by such methods of solutions. 

was coined to explain its existence. The i~ultipli~ity 
arising in this situation can be quite simply discarded 
once it is reaiized that time camlot go backwards. 

Another related study that merits a mention is due 
to Kashiwagi et al. [I4]. Frustrated by the limitation of 
one-dimensional models in distinguishing the do- 
minant ignition mechanism between surface and gas 
phase reaction theories for solid propellants, the 
authors resorted to a two-dimensional unsteady forced 
convective model. This model includes the surface 
regression of the solid surface and more importantly 
accounts for heat conduction in the transverse direc- 
tion in the solid fuei of semi-infinite extent, thereby 
introducing time as an independent variable. The gas 
phase was considered to be in quasi-steady state. In 
order to reduce the complexity of the numeric& 
computations, the local similarity approximation was 
invoked. The solution did not show any multi~ljcjt~: 
the results of the present study will help forward some 
explanations concerning this aspect of the solution. 

Artyukh et ul. [S] used the focal similarity approach 
in deducing the ignition and extinction criteria as- 
sociated with surface reactions. L,indberg and Schmitt 
[6] have shown that the extinction phenomenon the) 
observed has no counterpart in the exact solution of 
the problem. During the numerical sjmulatiou, the) 
found that multi-valued solutions are obtained when 
the increments in the longitudinal direction are not 
sufficiently small. Instead of directly integrating the 
governing equations, Mihail and Teodorescu [I?] have 
numerically solved the superposition integral derived 
previously by Lighthill [8], Chambre [9]* and others. 
With this approach, uniqueness of steady states was 
obtained inde~ndently of the step size. Lindberg and 
Schmitz also showed that the same boundary lager 
problem on a perfectly conductmg solid plate admits 
genuine mulliple solutions. 

Surface reactions can generally be classified in two This work will apply analyti~l tools to the f,tnd- 
categories. The surface either participates in the chemi- berg and Schmitz problem of aurfiic.ci: ignition in a 
cal reaction or may only act as a catalyst. The subjects flow system. The solid surface will be considered to he 
of ignition and combustion of the solid fuel fall into the either adiabatic or perfectly conducting. In the latter 
first category, and the problems of catalytic surface case, solution will be obtained by the local similarity 
recombination of dissociated species and numerous method. By comparison with an exact solution, it will 
other catalytic problems comprise the second. Liu [I] be demonstrated that the local similarity approxi- 
studied the transient problem of the onset of surface mation is vaiid in this case. For an adiabatic surface, 
combustion in a still atmosphere. He concluded that solutions will be obtained by an asymptotic method 
the system could stabilize in either a weak or a and by the local similarity method. Although the 
diffusion-limited reaction mode. Waldman [Z] ques- former approach predicts unique solutions, the locat 
tioned the validity of these inferences and showed that similarity method produces multi-valued results. A 
only a strong combustion mode is possible. Approxi- comparison with an exact numericai solution will 
mative analyses performed in his paper pointed to Ihe prove that the adiabatic surface ignition problem does 
possibility of three combustion states, which was not admit nonunique solutions. The accuracy of the 
declared to be physically implausible. Yung and asymptotic technique will be evaluated. The closed- 
Chung [3] correctly attributed the redundant com- form local similarity solutions will be obtained for 
bustion modes to the local similarity assumption, subsequent comparison with correct solutions. by 
which is based on the qualitative notion that the ratio transforming the governing equations into equations 
of time derivative to the function itself should be small. in the similarity space. In order to furnish correct, 
The correct solution, on the other hand, showed that although approximate, asymptotic solutions, the 
the timewise tem~rature gradient at the incipient governing equations will be cast into an integral form. 
ignition point was so large that a term, ‘thermal shock’, This can be done only by suitably approximating the 
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velocity profile near the surface. Instead of producing 
the Lighthill type of integral equation, a nonlinear 
Volterra equation will be generated, which will be 
solved by employing the Laplace method of evaluating 
integrals in the case of an adiabatic plate. The essen- 
tially closed-form nature of the solutions will aid in 
deciphering correctly the characteristics of the approx- 
imation methods of solution. 

DESCRlFTlON OF THE PROBLEM 

The model being considered is a two-dimensional 
system in which a stream of reactants flows past a solid 
surface. An exothermic reaction occurs on the solid 
surface. The solid may be either chemically reactive or 
merely catalytic in nature. Two kinds of thermal 
conditions at the solid surface are represented. In the 
first, the thermal conductivity of the solid is taken to be 
infinite. In the second case, the solid is very thin or its 
thermal conductivity is negligible, so that the boun- 
dary condition of an adiabatic surface is implied. 

MATHEMATICAL FORMULATION 

The following are the material, momentum, and 
energy boundary layer equations for flow past a flat 
plate that account for a finite-rate chemical reaction on 
a solid surface. 

Continuity : 

-&(PU) + -$PU) = 0. (1) 

Momentum : 

au au a au 
Pu~+Pvdy=dy P’ay. ( > (2) 

Conservation of energy : 

ah ah a p ah 
pw&+pc&=dy pr j-j. 

( > 
(3) 

Conservation of species : 

ac, ac, a P ac, 
pu~+Pvdy=dy 5%. ( > (4) 

Where 

h = I2 C,h,, 

s T 

h, = hf’ + 
TO 

CpI dT. 

Initial conditions, 

at x=0, y20: 

I(= II,, v=O, T = T,, C,= C,,. 

Boundary conditions, 

at x > 0, y=o 

u=o=o 

For perfectly conducting plate 

L ah s() 0 ay y=o 

dx = 0 and T, = const. (7) 

For adiabatic plate, 

ah (-> ay y=. = O. 

At x > 0, y+a, 

u = u,, T = T,, Ci = Ci,. 

Some of the assumptions adopted in this study are : 
the gaseous mixture behaves like a perfect gas whose 
Prandtl and Schmidt numbers are constant and equal ; 
the specific heat of the gaseous mixture is a constant, 
and the ratio, pp/p,p,, is a constant, I. The gaseous 
mixture is considered to be frozen, and the pressure is 
taken as a constant. The energy equation can also be 
written in terms of temperature as 

(8) 

In order to compare the results directly with those of 
Lindberg and Schmitz, the reaction mode1 of those 
authors is used in this study. The kinetic mode1 
considered was the catalytic oxidation of carbon 
monoxide on a silver-palladium catalyst. Carbon 
monoxide (subscript 1) and oxygen (subscript 2) react 
irreversibly to form carbon dioxide (subscript 3) 
according to the following stoichiometry : 

co + )O, + coz. 

Thus, 

(9) 

where M denotes molecular weight. The rate ex- 
pression was represented by the following second- 
order Arrhenius type relationship : 

. (10) 

The kinetic constants, E and k, were taken as 48.5 kJ/ 
mol and 0.013 m4/(s.kg.K), respectively. The ad- 
ditional data used in their calculations are given 
below : 

p = 1 atm, T, = 473 K, To = 298 K, 

(PI& = (P2DbJ m = 7.98 x 1O-6 kg2/(m3 s2), 

c,, = 0.1, Czrn = 0.9, c,, = 0, 

h: = - 3.95 kJ/g, hi = - 8.94 kJ/g, h; = 0. 

The following nondimensional variables are defined, 

ac, pD- = Ji,. a Y 
H= 

h,-h 
p> (11) 

h, 
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where hi is the stoichiometri~ coefficient for com- 
ponent i and J, is equal to .I,,,,,%,. 

First, thecontinuity equation is satisfied by defining 
the stream function, rl/, in the standard manner [IO] 
(i.e. ?$.‘i.x =. --!x, ?tb:‘iy = pu). Solution of the 
momentum equation, equation (2), is well known. 
Utilizing the surface shear stress, A(x), available from 
the solution, the velocity, u, is replaced by its assymp- 
totic form near the surface, after Fage and Falkner 

ClLl. 
This is acceptable because it is the velocity profile 

near the surface that most influences the temperature 
and the distribution of chemical species. Thus, 

A(x) n=--, , (12) 
IL 

where A(x) is the shear stress at the wall. The stream 
function, $, can now be approximated as, 

which relates u with II, in the following way: 

3’:“. (13) 

The governing equations, when transformed from 
(x, 4’) to (z, $1 plane, are : 

(14) 

where Y may represent 0, H, or Cp, and z is a transient 
independent variable defined as, 

The transformed initial and boundary conditions are : 

@(O, $I= &O, $1~ HP, $1 = 0, 

= 

= f W(z), 

so;; (~i~z~)~~* dz = 0 ~n~u~~~~ate 

IL_o =; o for an adiabatic 

plate 

where 

ees 
J, = kpZ,C,vCLl,T,,~~~~-~exp 

w 

(161 

(17) 

The shear stress, A(x), is given by the following 
equation : 

wheref”(0) is the Blasius surface shear available as the 
solution of equation (2). With the use of the above 
representation for A(x), equation ( 15) becomes 

ANALYSIS 

The governing partial differential equations for the 
adiabatic plate and for the perfectly conducting plate 
will now be analyzed by an asymptotic technique and 
by a local similarity method. In order to apply the 
asymptotic technique, the reactant conversion equa- 
tion in the (z,I,&) plane is first transformed into a 
nonlinear integral equation, subsequently simplified 
for the case of adiabatic plate by the Laplace method of 
evaluating integrals with a large parameter. For the 
purpose of obtaining local similarity solutions, the 
governing equations are transformed into a similarity 
space. True similarity sol&ions are possible only in the 
frozen and equilibrium limits. In the context of local 
similitude, however, non-similar terms consisting of 
longitudinal derivatives are dropped and the axiaI 
variable is treated as a parameter. The analytic results 
from the two methods will be compared with an exact 
numerical solution. 

1. Solution by usgmytotic method 

(a) A&&uric plate. The linear governing equations, 
(14), are transformed in the independent variable z as 
follows : 

where Y is the Laplace transform defined as 

I 

a? 
YE e-*=Y(z, $)d=. 

0 

The solution ofequation (2211, which is finite in the Iimit 
of JI --t X3, is 

where Krj3 is the one-third order modified Bessel 
function of the second kind. On applying the boundary 
condition given by equation (161, the following equa- 
tion results for &: 

Using the convolution theorem, the inverse transform- 
ation of the above equation is 
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1 
1 x------- 

(z-z’)2’3 I-(1/3) 
dz’. (25) 

On employing the enthalpy and conversion defining dx’ 
equations, (5) and (1 l), H can be expressed as x (xr -X1)2’S 

H=l-$[C,,h:+C,,h; 

+i3,h; + C,(T- To) - 4Ah°C,,] (26) 

where 

x lim s [ysyl XT 

emX1x - 2’3 dx, 1 
P-m 0 

For the adiabatic plate, solution of the energy equa- 
tion, expressed in terms of the enthalpy function H, is 
trivially obtained as 

H = 0, 

so that, with the help of equation (26) 

qj = CpT, c- > Cl, 
0. (28) 

With the availability of the above relationship, it is 
necessary only to solve the 4 equation, (25), to describe 
the flow system. After some mathematical manipu- 
lation of equation (25), the following integral equation 
obtains : 

* = L ! 2’31 
0 w $3 I-(213) 

(29) 

where 

and 

C Ah0 
B= ‘” 2M1 C2m 

C,Tm ’ r=r2~T 

(30) 

XT = x314. 

From physical reasoning, the surface temperature for 
an adiabatic plate is a monotonically increasing 
function of x, so that the Laplace method may be 
employed to evaluate the integral in equation (29) 
asymptotically as follows [12,13] : 

E&(1 -%)(l -g)exp(&) 

x [P~~~~~~r)~‘3 {: e-r1x;2/3 dxl 

=‘(1,3)&(1-;)(1-~) 

Finally, on rearrangement : 

@dB,=l $ 4 1’3 

[ 0 

__ _ 

“dx h&3 

x [r(1/3)]2Pr2’3kp$T,C2m eeB 3 

[~(p~u),11’2[f”(0)1”3 B 1 

(32) 

The numerical computation involved in integrating 
equation (32) is almost trivial compared with solving 
equation (25), from which it was derived. 

(b) Perfectly conducting plate. In the case of the 
perfectly conducting plate, the surface acquires a 
uniform temperature. In this situation, the Arrhenius 
term of the chemical reaction term [II+‘)] in equation 
(5) loses its positional dependence and becomes a 
constant above z’. This leads to the hypothesis that W 
(z’) is a slowly varying function in comparison with the 
term l/(z - z’)~‘~, which has a removable singularity at 
the upper limit of the integral under consideration. But 
this is, indeed, the premise upon which the local 
similarity method is based, and the corresponding 
term in that method is much easier to handle. For that 
reason, this approach for the perfectly conducting 
plate is abandoned here in favor of the local similarity 
method. 

2. Solution by local similarity method 
(a) Perfectly conducting plate. For analysis of pro- 

blems by the local similarity method, it is convenient to 
transform the parabolic equations into a similarity 
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space, which reveals the true nature of the parabolic where~“(~) is obtained from the existing exact solution 
probtem. The following similarity variables are of the ~tlomentum equation (34). The solution of the 
defined : remaining equation (35) is 

The transformed governing equations are 

j.“’ + .j.T” = 0. 

and 
x exp 

where f is the nondimensional stream function, 

f’= -.L, 
mi 

(36) 

and the prime denotes differentiation with respect to q. exp 1+@ i ! 

& 

The transformed initial and boundary conditions are: X -----~(i-CpW){t --r&&r ‘, (41) 
(1 +@A 

at 5 = 0, 4 > 0, and 

at 

f=f’=O, B =o, d, =o, 

C > 0, I? = 0, 

f =f’ = 0, 

I 

Substituting equations (37) and (42) into (38k and 
making use of equation (41) yields: 

where 

The local similarity method is founded on the notion 
that changes in the streamline direction (f) are suf- 
ficiently small that the streamwise derivatives in 
equation (35) may be neglected. The variable 5 appears 
explicitly only through the boundary conditions. The 
velocity approximation of equation (12) gives forf(ui) 

Before these solutions are discussed, the adiabatic case 
will be analyzed by the local simiIarity method also. 

.f =.f”(O)$/Q (3% (b) A&&tic plate. Equation (41), derived earlier 
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for the case of perfectly conducting plate, is equally 
valid here. With the help of the relationship between 
the fractional conversion and the nondimensional 
temperature given by equation (28), (41) may be 
modified to yield the following algebraic equation : 

1 
Too=473 K 

6.- 

: 
‘pp ul,L=2.92xl~‘~k~/m~s)’ 

4.- 

T,=595 K 

,// 

- 

T,=500 K 

I 

0 5 IO 15 20 25 23.2 

In all numerical computations, the parameters i, z;i,, 
and I@, the average molecular weight of the mixture 
were assigned values of 1, 0.53 kJ/(g *k) and 
32 g/g mole, in that order. 

RESUL?X AND DISCUSSION 

It should be noted that the temperature has a much 
greater influence on the reaction rate than does the 
concentration. For a perfectly conducting plate, the 
surface attains a uniform temperature, which induces 
the reaction rate to be a slowly varying function, and 
the integral equation degenerates into a nonlinear 
algebraic equation with possible multi-valued so- 
lutions associated with it. The same ignition behavior 
is also predicted by the exact numerical analysis. Van 
Heerden [14] states that a necessary condition for 
multiplicity in exothermic processes is a feedback of 
heat along the reaction path. The conduction of heat 
along the axial direction in the plate provides the 
necessary feedback in this case. As shown in Figs. 1 and 
2, three combustion modes are possible. There are two 
stable solutions : at low temperature and low degree of 
conversion, and at high temperature and high degree 
of conversion. The middle combustion mode cor- 
responds to an unstable ignition state. The two stable 
solutions represent the extinguished and fully-ignited 
states and are, respectively, chemically and diffusion 
controlled. 

In the case of a perfectly conducting plate, 8, is 
constant and equation (40) expresses a true similarity 
solution in which B is a function of the similarity 
variable, q, only. For an adiabatic surface, on the other 
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FIG. 1. Surface temperature dependence on plate length for 
perfectly conducting plate. 

(PPUJ, x f kg/h.st)2 

FIG. 2. Surface concentration profile for perfectly conducting 
plate. 

hand, Bw as given by the implicit relationship of 
equation (45) leads to spurious multi-value solutions 
not present in the exact solution of the governing 
equations. Figure 3 shows an interesting feature, 
namely, that according to the local similarity method, 
as the free stream temperature is increased, the region 
of multiplicity narrows and ultimately vanishes. 

As explained by Kashiwagi et al. in [4], the adiabatic 
surface model of the present study may be regarded as 
a rough steady state analo~e of their unsteady 
situation. Whereas both equation (451, based on local 
similarity method, and equation (32), based on physi- 
cally correct Laplace asymptotic method, show x/u, 
to be a naturally occurring parameter implying that 
the ignition delay distances should be proportional to 
free stream velocity, [4] found the first ignition point 
to be always near the leading edge. This discrepancy 
was at~buted to the different boundary conditions 
considered in the steady state and unsteady state 
models. In the case of adiabatic surface, as considered 
in the present steady state model, the excess energy 
released by the surface reaction is stored entirely 
in the gas phase. However, in the unsteady state 
model, because initially the surface is cold, the excess 
energy goes into heating the solid phase so that the 
downstream part is too cold to initiate substantial 
chemical reaction. For this reason, ignition occurs at 

1600 
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FIG. 3. Local similarity solutions for adiabatic plate. 
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the leading edge after a lapse of some time (ignition these simplifications, the agreement between the re- 
delay time) when the surface has become hot enough, sults is excellent, even for a relatively low value of the 
and the first ignition point is always in a forward nondimensional activation energy parameter, [i. As 
location. Subsequently, ignition commences at down- opposed to the local similarity results, the solution 
stream positions and the steady state solution of the changes abruptly from a kinetically controlled to a 
present study is approached asymptotically in time. diffusion controlled regime near the ignition point. 

Figure 4 points to the extent of inaccuracy inherent 

in the use of local similarity method for an adiabatic 
surface. Kashiwagi et al. [4] also recognize this 
limitation and in a follow-up study [15] results were 

presented (for the gas phase ignition problem) without 
employing the local similarity assumption. The quali- 
tative agreement in results of the two studies con- 

solidate the conclusion that local similarity method 

when applied to the conducting-surface ignition pro- 

blem produces results which are at least qualitativ,ely 

correct. On physical grounds, the unsteady problem as 

formulated allows only transverse conduction of heat 
into the solid phase, hence there is no feedback along 

the streamwise direction. Therefore, no multiple sol- 

utions are expected to exist. Results of [4] do not 
indicate any spurious multiple solution being in- 

troduced by the local similarity method either. On the 
other hand, Fig. 3 has already confirmed that in the 
case of an adiabatic surface, the local similarity 

method leads to physically unrealistic multiple so- 
lutions. It is proposed that in the unsteady model, the 
extra mechanism of heat diffusion into the solid phase 
(as compared to the adiabatic surface) relieves the 

longitudinal gradient of surface temperature, thereby 
enabling the local similarity method to accommodate 

correctly the less abruptly changing character of the 
solution. 

It should be pointed out that the assumption of 
unity Lewis number can be readily relaxed by follovv- 
ing the special technique developed in [16]. According 

to this method, equation (25) for reactant conversion 
and the like equation for temperature are to be 
handled separately. The two equations can be situ- 

plified by applying the Laplace method to them 
individually and then solved simultaneously. The full 

details of the procedure will be disclosed in a future 
publication. 

Figure 4 also provides a comparison between the 
results obtained by the present Laplace asymptotic 
method and the exact numerical solution of Lindberg 

and Schmitz. To make the problem amenable to 
closed-form solutions in the present work, three as- 
sumptions not previously used for finite difference 

solutions have been employed. The specific heat was 

regarded as constant, and the gas phase density 
assumed to be a function of the temperature only. An 
approximate velocity profile that is asymptotically 

correct at the solid surface has been used. In spite of 

The provision of feedback is not a necessary con- 
dition for existence of multiplicity. In a follow-up 
paper by Lindberg and Schmitz [ 171, involving flow 

past a blunt adiabatic object, the solution possessed 
genuine multiplicity. This was explained on the basis of 
possible multiple stagnation or ‘initial’states. It should 
be mentioned in this connection that the existence of 
simple and multiple transitions between frozen and 
equilibrium limits in the case of gas phase diffusion 
flames for the stagnation mixing layer has also been 

studied extensively in the past [18]. The mixing layer 15 
created by a jet of fuel meeting an oncoming stream of 
oxidant at the stagnation region of a blunt body. 
Stated simply, the multiplicity of states occurred when 

the nonlinearity in the reference Damkohler number 
became exceedingly large. For instance, a strong 
exothermic reaction can greatly increase the tempera- 
ture of the reaction zone from the original value. 

without the reaction causing the exponential function 
of the local Damkohler number to vary by an order of 

magnitude. Lindberg and Schmitz refer to this as the 
possible source of multiple initial states. It follows that 
these authors would not have observed multiplicity 

had they considered an example wherein the kinetic 
rates were lower or the residence time was smaller 
Finally, the stagnation point multiplicity is possible 
only because the local Damkohler number i\ indc- 
pendent of the longitudinal coordinate in the stag- 
nation region. 

600- SOLUTION 

, I xlo-6 5 5x1o-6 

~PPUlaz x (kg/Cm 511’ 

FIG. 4. Surface temperature profile for adiabatic plate. 

C0NCLUSI0US 

A forced convective ignition problem has been 

analyzed. For the case of a perfectly conducting plate, 
the surface temperature is constant, and the local 
similarity hypothesis is physically applicable. Three 
combustion modes, two stable and one unstable are 
possible. For an adiabatic surface there is, near the 
ignition point, a sudden change in the character of the 
solution from a kinetically controlled to a diffusion 
controlled regime. Depending upon the free stream 
temperature and other flow conditions, the local 
similarity hypothesis may not accommodate the ab- 
ruptness, and may produce multi-values results that 
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are at variance with reality. The Laplace method of 6. R. C. Lindberg and R. A. Schmitz, On the multiplicity of 

evaluating integrals is mathematically exact in the steady states in boundary layer problems with surface 

limit of /_l approaching infinity. The usefulness of the 
reaction, Gem. Enang Sci. 24. 1113-1129 (1969). 

, , 
asymptotic technique can he judged from the fact that 

the results are in excellent agreement with the exact 
numerical solution, even though the value of the 
nondimensional activation energy parameter was only 

12.34 and the velocity profile used in the computations 
was an approximation. It has been found that the 
ignition distance is proportional to the product of the 
free stream velocity and the inverse of the square of the 
oxidant concentration. This is in apparent conllict 
with the findings of a previous study on the de- 
termination of the dominant ignition mechanism in 
solid propellants ; this discrepancy has been explained. 

R. Mihail and C. Tkodorescu. Laminar boundary layer 
with nonisothermal surface reaction, Chem. Engng Sci. 
30, 993-996 (1975). 
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SOLUTIONS EXACTE ET APPROCHEE DUN PROBLEME D’ECOULEMENT 
AVEC REACTION CHIMIQUE HORS D’EQUILIBRE 

R&me - En Ctudiant un problime d’ecoulement bidimensionnel, on degage les consequences de l’emploi 
de methodes approchees dans les probltmes d’ignition. Des solutions asymptotiques et a similaritt locale 
sont obtenues pour des ecoulements sur une plaque adiabatique et sur une plaque parfaitement conductrice. 
Les equations aux d&ivies partielles sont transform& dans l’espace de Von Mises en une seule equation 
integrale qui est resolue par la methode de Laplace et avec l’hypothise dune fonction lentement variable. 
Pour appliquer la technique de la similarit locale, on utilise la transformation classique pour la couche 

limite. Les risultats sont compares a la solution numtrique exacte. 

EXAKTE UND ANGENAHERTE LGSUNGEN FtiR EIN STRGMUNGSPROBLEM 
MIT CHEMISCHER REAKTION UND IM NICHTGLEICHGEWICHTSZUSTAND 

Zusammenfassung-Anhand der Untersuchung eines zweidimensionalen Striimungsproblems werden die 
Folgen erlautert, die sich aus der Anwendung von Naherungsmethoden bei Ziindungsproblemen ergeben. 
Fur Stromungen iiber eine adiabate und iiber eine vollkommen leitende Platte werden asymptotische 
Liisungen und Lijsungen ijrtlicher Ahnlichkeit erzielt. Die bestimmenden partiellen Differentialgleichungen 
werden in eine einzige Integralgleichung im von Mises-Raum transformiert, die sich mittels der Laplace- 
Methode und unter der Voraussetzung einer sich schwach andernden Funktion l&en lLl3t. Urn die Methode 
der &lichen dhnlichkeit aufdas vorliegende Problem anwenden zu kiinnen, wird die tibliche Grenzschicht- 
Ahnlichkeitstransformation angewandt. Die Ergebnisse werden mit einer vorliegenden exakten numerischen 

Liisung verglichen. 
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TOYHblE M ~PMEZlM~EHHblE PEUlEHWl 3AAAYM 0 XMMWIECKM 
PEAI-HPYDLIJEM HEPABHOBECHOM TE‘iEHMM 

AHHOTWW~-- Ha OCHOBC M3y'leHHII 3aUa'dH 0 DyMepHOM TWCHHH BblRCHeHa BOSMOxHOCTb ACrlOnb- 

3OBaHWI npH6JlkiWHHbIX MeTODOB ,!,nfl ~ILl~HLi~ 3afiaY u0 BOCnnaMeHeHHH). nO2ly'iCHbI aCHMrlTOTA- 

9ecKhie M nOKanbHO-nOLIO6HbIC pelueHm ilJlR cnyqaet3 06TeKaHHR ansa6aTwiecKofi H meanbH0 npo- 

BO~~~C~n~aCTMH.~HOBHbtCfl~~~epeHu~a~~bHbIeypaBHCH~~B~aCTHb,XupOH3BO~Hb1X npeo6pa3ywrcn 
El OnHO HHTerpa.lbHOe ypaBHCHHe B upOCTpaHCTBe Meseca. peLlIeHHe KOTOpOrO MOEHO rIO2yWTb C 

notdowbm hwTona Jlannaca II nonymemm 0 MenneHHo kisMeHnmuek4 f$yHK~kikt ,&m npmdeHeHm 

MeTOna nOKanbHOrOnono6Wl HCrIOnb3yeTC54 06bIqHOe aBTOMOileJbHOe npeo6pa3oBaHae uOr~dHH'iHOI0 

CJ,OX. npOBeneH0 CpaBHCHHe pe3yJlbTaTOB C HMelOLL,AMCII TOVHbIM WCJlCHHbIM pCIW2HHeM. 


